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Intensity dependence of the inverse bremsstrahlung 
absorption coefficient in hot plasmas 
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Abstract. The net absorption coefficient allowing for stimulated emission is derived 
for intense light in a hot non-relativistic plasma, using a semi-classical approach, 
which takes into account the non-Maxwellian velocity distribution caused by the 
strong electric field of the radiation but considers only absorption and emission 
processes involving a single incident photon. The absorption coefficient is found to 
vary inversely as both the electric field and the frequency, a result intermediate 
between the usual weak-field coefficient and a strong-field coefficient due to Rand 
which is intended to include multi-photon processes. It appears that the net effect 
of multi-photon processes is to produce stimulated emission. Rand’s result is shown 
to imply that, in order to heat plasma to a given temperature, a minimum time and 
(on a simple dynamic model) a minimum quantity of plasma are necessary. 

1. Introduction 
Lasers now available are capable of generating pulses of light with peak powers of many 

gigawatts. By focusing the light, radiation fluxes in excess of loz2 erg cm-2 s- l  can be 
produced. Though much interest has been aroused in the use of laser light to produce 
very hot dense plasmas, little attention has been given to the determination of the absorption 
coefficient of a plasma for such intense radiation. 

It is generally accepted that, once a moderate degree of ionization has been achieved, 
the dominant mechanism by which laser light heats a plasma involves free-free transitions 
of electrons in the fields of positive ions. Many authors (e.g. Basov and Krokhin 1964, 
Dawson 1964) have assumed that the free-free, or inverse bremsstrahlung, absorption 
coefficient for light of a given frequency is a function only of the plasma temperature and 
density, being independent of the radiation flux. However, when the kinetic energy imparted 
to a plasma electron by the oscillating electric field of the radiation is comparable with, or 
greater than, the mean thermal energy the electron velocity distribution is far from 
Maxwellian. Rand (1964) has pointed out that this must have a significant effect on the 
interaction and has derived an expression for the absorption coefficient in the strong-field 
case, which varies inversely as the cube of the electric field. As will be shown below, this 
implies that a certain minimum time is necessary to heat a plasma to a given temperature 
using light of a given frequency, no matter how much laser power is available. An approxi- 
mate treatment of the dynamics of small freely expanding spherical plasmas heated in this 
way shows that Rand’s result also implies the need for a certain minimum quantity of 
plasma if a given temperature is to be attained. 

A simple alternative method is used in this paper to calculate the strong-field absorption 
coefficient for a hot non-relativistic plasma in the low-frequency limit. The electron motion 
is treated classically and only processes involving a single incident photon are considered. 
The calculation yields an absorption coefficient which varies inversely as the electric field, 
a result intermediate between the weak-field expression and Rand’s strong-field result. 
No minimum time or minimum quantity of plasma are required to reach a given tem- 
perature. The  absorption coefficient is inversely proportional to the frequency of the light, 
whereas Rand predicts direct proportionality. 

2. The net free-free absorption coefficient 
2.1. General considerations 

Consider a group of dn, electrons of velocity ZI and mass me interacting in unit volume 
with n, stationary heavy ions of charge Ze. The rate of spontaneous energy emission at 
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frequency v in the interval dv by this group is 

d S  = dnenivu(v, u)hv dv erg cm-3 s- l .  (1) 

Here h is Planck's constant and u(v, v) is the total emission cross section, summed over 
polarization directions and integrated over all angles between the initial and final velocities, 
and between the initial velocity and the direction of the emitted photon. u(v, v) may be 
written (Bethe and Salpeter 1957, p. 419) 

32n2Z2e6 
33i2me2v2~3hv u(v, v) = - G(v, C )  

where G(v, v) is the Gaunt factor (see e.g. Bekefi 1966, p. 89) and c the velocity of light. 
From the Einstein relations (see e.g. Bekefi 1966, p. 47), the rate of stimulated (or 

induced) emission in the presence of radiation of energy density w at frequency v is given by 

dnenic3 
8nhv3 

d I  = ~ vu(v, v)hvw erg s - l .  

I n  the process of emission an electron loses energy hv and its velocity changes from v to 
7;'' = ( ~ ~ - 2 h v / m , ) ~ / ~ .  The  total rate of absorption of radiant energy by the process in 
which an electron of velocity v gains energy hv may also be obtained from the Einstein 
relations, and is given by 

dnenic3 v '  
dA = ___ (--I U'U(V, v')hvw erg C M - ~  s - l .  

8nhv3 (3) 

Here v' := (v2+2hv/me)1'2, and spontaneous emission has been neglected. Thus the net 
rate of energy absorption by this group of electrons of velocity v is given by 

dQ = d A - d l  
4n dn,niZ2e6 
33'2me2hv3v2 

- - {e'G(v, U ' )  - vG(v, r)}w erg cm-3 s - l ,  (4) 

2.2. Thermal velocity distribution (weak field) 
For a Maxwellian distribution of electron velocities, integration of expression (4) 

presents some problems. In  the low-frequency high-temperature limit (hv < KT) it is 
convenient instead first to obtain the total absorption rate AT from (3) by setting U' = v, 
replacing the Gaunt factor G by a constant average value €(v, 7') and integrating over all 
velocities. The  result, for a total electron density ne ~ m - ~ ,  is 

since the average value of l / v  at temperature T is ( 2 m , / ~ k T ) ~ ' ~ ,  where k is Boltzmann's 
constant. 

T o  obtain the net rate of energy absorption per unit volume QT it is then necessary to 
allow for stimulated emission. Thermodynamic considerations (see e.g. Bekefi 1966, p. 53) 
lead to the expression 

so that when hv < k T  
AThv 

QT - k T  * 
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The time-averaged rate is given by 

where ( w )  is the time average of w. The corresponding net absorption coefficient 

G(v,  T )  cm-l  

For 

(Oster 1961), where In y = Euler’s constant = 0.577. 

2.3. Non-thermal velocity distribution (strong jield) 

velocities to depart significantly from a Maxwellian distribution, i.e. if 
If the electric field E e.s.u. due to the radiation flux is sufficiently strong for the electron 

(eE)2 2 12rr2m,kTv2 

strictly speaking no temperature can be defined when the field is applied. Also the electron 
velocity and the instantaneous local energy density of the radiation will be to some extent 
correlated since both are functions of the electric field. 

Let us consider a volume element whose dimensions are small compared with the 
wavelength of the radiation. The  local electric field may be written as 

E = Eo cos(2xvt). (8) 
At optical frequencies the motion of an electron due to the radiation will have an amplitude 
small compared with a wavelength even at extremely high power densities. Also, the period 
of oscillation of the radiation will be much shorter than either its coherence time or the 
collision time of the electrons. Thus, to a good approximation, the oscillatory component 
of the electron velocity has the instantaneous value 

s in(2nvt) U = uosin(2mt) = -- 
2mm, 

eE0 

in the direction of the field. This value is common to all electrons in the volume element 
considered. Additionally, the electrons always have some random energy, which in the 
absence of the field would correspond to a temperature T. For convenience, the random 
part of the velocity distribution will be replaced by an average velocity vT which will be 
supposed to be perpendicular to the electric field (Rand 1964). Then 

U 2  = U 2 + U T 2 .  (9) 
A hot plasma is considered, such that vT2 9 2hv/m,, so the Born approximation is valid 
and 

3112 
G(v, n’) = __In 

7T 

Thus 
~ ’ G ( v ,  7.”) - uG(v, e )  = ( U ’  - ~ ) G ( v ,  v ’ )  + G{G(v, U ’ )  - G(v, U ) ]  
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since ln(2mev2/hv) % 1. Hence from (4) the net local rate of absorption of energy per unit 
volume by ne electrons, all of velocity z', 

4neniZ2e6 2meu2 
Q = ----ln iT) w. 

3 me3v22'3 

When E ,  2: 0, z' 1: and the time average of (11) may be compared with (6). Despite 
the approximation made in (9), the results agree to within a factor close to in provided zT 
is taken to equal ( ~ k T / 2 m , ) ~ ' ~ ,  by analogy with the previous section, rather than the r.m.s. 
value (3k T/m,)l r2,  

The instantaneous value of the radiation energy density in the small volume element 
considered is given by 

EO2 w = - cos2(2mt). 
477 

Thus the instantaneous local value of Q becomes 

where 

The  time average of Q is then given by 

2 Eo2 n / 2  cos2 8 2meuo2 
(QE) = - F - /  77 uo ~ sin2 8+a2)312 -ln(--(sin28+a2)]d6' hV (13) 

where a = cT/u, and 0 = 2nvt. In  sufficiently strong fields, such that a < 1, the main 
contribution to the integral comes from small values of 8. (This consideration justifies the 
use of the total emission cross section instead of the differential cross section for particular 
orientations.) Thus when imuO2 9 imvT2 B hv 

cos2 8 d8 
(sin2 8 + a2)312 
--___ 

where (w > = Eo2/8n is the time-averaged radiant energy density. The  corresponding net 
absorption coefficient 

16 2 neniZ2e5 nk T 
377 77 cvmekT(w)1'2 

NE = --(-) - In cm-1. 

Rand (1964) employed a rather more elaborate procedure intended to include multi- 
photon processes. If we replace Rand's v, by (nkT/2me)ll2, his result for strong fields and 
low temperatures (imuO2 hv % +mvO2) may be written 

n,niZ2e3v 4e2 {w ) 
In ( -1 In( cm-l .  

xRL = (;I C ( W ) ~ / ~  n2m,kTv2 

For strong fields and high temperatures (&muoz imvo2 $ hv) Rand's treatment must be 
modified by changing the lower limit of integration over the longitudinal wave vector, 
kmin in his notation, which becomes approximately 2nma0/h. Then In(ko/kmi,) N 1 at the 
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time when the absorption rate is greatest. Thus, for the conditions under which expres- 
sion (15) is valid, Rand’s procedure gives a net absorption coefficient 

neniZ2e3v 64e2 (w ) 
c ( w  )3‘2 n2mekTv2 

E(RH = 2(2n)l’2 In (-- ) cm-l 

3. Implications for plasma heating 
Let us consider a parallel laser beam of radiant flux D erg cmM2 s-l. The  power absorbed 

per unit volume in a thin sheet of plasma perpendicular to the direction of propagation of 
the beam is aD erg cmW3 s-l. 

For a small radiant flux in a high-temperature plasma, i.e. for 

3ncmek Tv2 
2e2 

, k T 9 h v  D <  

expression ( 7 )  may be used to find the power absorbed per unit volume 

4 2 li2neniZ2e6 4kT D 
C I T D  = 3 (G) c(mk)3/2 In (F) F** 

For a large radiant flux in a hot plasma, i.e. 

3ncmekTv2 
2e2 ’ kT 9 hv D 9  

expression (15) derived in this paper for the absorption coefficient gives 

16 2 1!2neniZ2e5 6kT D112 
In -- - 

-- ( h v  1 vT 377 c1I2mek 
CI E D = - (-1 

while expression (16 )  derived from Rand’s paper gives 

gRHD = 2 ( 2 ~ ) ~ ’ ~ c ~ 9 z ~ n ~ Z ~ e ~  In (r2z2:v2) - 

Figure 1. Power absorbed per unit volume of plasma (normalized to unit ion and 
electron densities, for ion charge 2 = 1) from a neodymium laser beam of radiant flux D: 

(a) as calculated in this paper; (b) as derived from Rand (1964). 

I n  figures l (a )  and l (b ) ,  a,D/neniZ2 and gRHD/nen,Z2 are plotted as functions of D at 
several temperatures for the frequency of the neodymium laser (v = 2.83 x 1014 Hz). In  
each case a,D/n,niZ2 is also plotted in the region of small values of D. Broken lines show 
the estimated behaviour of the curves in the transitional regions. 
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As may be seen from figure l ( a ) ,  if the strong-field absorption coefficient is correctly 
given by ctE, the power absorbed by the plasma sheet increases monotonically with D. If, 
on the other hand, the correct strong-field absorption coefficient is ctRH, it is clear from 
figure l ( b )  that the power absorbed by a plasma at a given temperature will have a maximum 
value, reached when uo 2: vT. There will then be an optimum power density for plasma ~. 
heating, given by 

.ir2cmekTv2 
4e2 

Do,, N --. 

For the neodymium laser Do,, N 3 x lOI5Terg cm-2 s-l at T’K. 
The maximum power which can be absorbed per unit volume of plasma will be rather 

less than a,D,,, (and will be independent of the laser frequency except through slowly 
varying logarithmic terms). It is shown in the appendix that there is a minimum time 
needed to produce plasma at a given temperature by this process if Rand’s treatment is 
correct, no matter how much laser power and energy are available. It is also shown that 
on a simple dynamic model a minimum quantity of plasma is necessary. Thus the absorp- 
tion coefficient ctRH derived following Rand imposes more severe restrictions on the experi- 
mental conditions necessary for very high temperatures to be achieved than are imposed 
by 

4. Discussion 
The net absorption coefficient aE derived in $2.3 only takes into account processes 

involving a single incident photon, whereas Rand’s ctRL and its high-temperature equivalent 
appear to include the effects of multi-photon processes. If this is the reason for the differ- 
ence between the results, it seems that multi-photon processes reduce the net absorption 
coefficient for strong radiation fields, because aRH < C I ~ .  Thus, if we take all multi-photon 
processes together, the rate of stimulated emission apparently exceeds the total rate of 
absorption. 

For certain directions of the electron velocity relative to the electric field of the radiation 
Marcuse (1962, 1963) predicted that stimulated emission will exceed absorption in weak 
fields. Bunkin and Fedorov (1966) considered multi-photon effects in the weak- and strong- 
field limits for electron velocities both parallel and perpendicular to the electric field. They 
confirmed Marcuse’s result for weak fields, but for strong fields were unable to determine 
whether or not emission exceeds absorption. It is clear from the results obtained above 
that a knowledge of the correct net absorption coefficient is of some practical importance, 
and a more general treatment of the problem is desirable. 
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Appendix. Dynamics of laser-heated plasma 
Some of the consequences of using the absorption coefficient derived from Rand’s 

paper are discussed below for the case of an isolated speck of matter in vacuum, heated 
rapidly by a laser pulse to high temperatures. 

The model adopted is similar to that of Basov and Krokhin (1964), Dawson (1964) 
and others. Spherical symmetry is assumed. The  early stages of plasma formation are 
ignored, and at time t = 0 the target is supposed to be a cold uniform fully ionized sphere 
of radius y o .  The initial electron density ne, is determined by the condition that the plasma 
frequency equals the laser frequency, i.e. 

.irmev2 nee = -. 
e2 
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The  plasma expands rapidly to lower densities, however, so no correction involving the 
plasma frequency is made to the absorption coefficient. Radiation losses are neglected. 

When the plasma is heated and begins to expand, an increasing part of the energy 
supplied to it takes the form of radially directed kinetic energy. The dynamics of this 
process are simplified by the assumptions that the plasma is isothermal and of uniform 
density. The  equations of conservation of energy and momentum are then 

d 
-- (A4f2 + 3 N k T )  = 2P 
dt 

where N is the total number of particles (= N,+N,), M = three-fifths of total mass of 
plasma (Dawson 1964), p = nkT, where n = n,+n,, and P is the rate at which energy is 
supplied to the plasma. Basov and Krokhin took P to be a constant. In  the following analysis, 
in order to find a lower limit for the time needed to heat the plasma to a given temperature, 
it will be supposed that the maximum rate of energy absorption per unit volume derived 
in 5 3 on the basis of Rand’s treatment is maintained over the whole plasma at all times. 
Thus 

1 v  

p =  B--- ?3T1/2 (A41 

where 
Z3e4 4k T 

(A single ion species of charge Ze is assumed.) The  slowly varying logarithmic term is 
replaced by a constant which may be taken to be about 8 for the case of neodymium laser 
light in the range of temperature of interest (lo6 5 T 5 lo8 OK). If we take B to be a 
constant, equations (A2) and (A3) with (A4) give 

BNt = kr3 T3’2 (A61 
and a solution to these equations is 

where 

and 

For given y o ,  M and N ,  the temperature T passes through a maximum T,,,, which 
occurs at time t,,,( T )  such that 2(t,,,( T)I2 = g. It is found that 
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since MjN 2: 3mi/5(Z+1) because mi B me, and 

from (Al). 
For a given laser frequency, therefore, the maximum temperature attained depends 

on the initial radius of the plasma. Conversely, a minimum initial radius is necessary 
for a specified temperature to be reached, no matter how much laser power and energy 
are available. From (A9), if a deuterium plasma is heated by a neodymium laser, 

(YO)min = 9 x 10-18T2 

so to reach a temperature of 4 x lo8 OK the minimum mass of deuterium required is 0.04 g. 
The  time t,,,(T) required to reach the maximum temperature for a given r,, is longer 

than the time required to reach the same temperature starting with any larger initial radius. 
There is indeed a minimum time tmin( T )  required to reach a given temperature T ,  however 
large the initial radius and however great the power and energy available. It is given by 

tmin( T )  = 3'2. 

Expression (A8) is plotted in figure 2 for several values of y o ,  together with the asymptotic 
expression (All) ,  for a deuterium plasma heated by a neodymium glass laser. 

I ( 5 )  

Figure 2. Temperature of deuterium plasma heated by a neodymium laser of optimum 
radiant flux, plotted as function of time for several initial radii y o .  

I t  must be stressed that expressions (A10) and (Al l )  are extreme minimum values 
and would probably need to be increased by a factor of at least 10 in practice. 
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